

An Example of a Lightweight Kernel

Ron Brightwell Sandia National Labs Scalable Computing Systems Department

rbbrigh@sandia.gov

Goals of Puma

- Targets high performance scientific and engineering applications on tightly coupled distributed memory architectures
- Scalable to tens of thousands of processors
- Fast message passing and execution
- Small memory footprint
- Persistent (fault tolerant)

Approach

- Separate policy decision from policy enforcement
- Move resource management as close to application as possible
- Protect applications from each other
- Get out of the way

General Structure

Q-Kernel: message passing, memory protection

- Policy enforcer
- Initializes hardware
- Handles interrupts and exceptions
- Maintain hardware virtual addressing
- No virtual memory paging
- Static size
- Small size
- Non-blocking
- Few, well defined entry points

The Process Control Thread

- Runs in user space
- More privileges than user applications
- Policy maker
 - Process loading
 - Process scheduling
 - Virtual address space management
 - Name server
 - Fault handling

PCT (cont'd)

- Customizable
 - Singletasking or multitasking
 - Round robin or priority scheduling
 - High performance, or debugging and profiling version
- Changes behavior of OS without changing the kernel

Levels of Trust

CPU Modes

- Chosen at job load time
- Heater mode
 - LWK and app on system processor
- Message co-processor mode
 - LWK on system processor
 - App on second processor
- Compute co-processor mode
 - LWK and app on system processor
 - App co-routines on on second processor
- Virtual node mode
 - LWK and app on system processor
 - Second app process on second processor

Portals Message Passing

- Basic building blocks for any high-level message passing system
- All structures are in user space
- A portal consists of one or more of the following:
 - A memory descriptor
 - A matching list
- Avoids costly memory copies
- Avoids costly context switches to user mode (up call)

Key Ideas

- Protection
- Kernel is small
 - Very reliable
- Kernel has static size
 - No structures depend on how many processes are running
 - All message passing structures are in user space
- Resource management pushed out of the kernel to the process and the runtime system
- Services pushed out of the kernel to the PCT and the runtime system

